Variational analysis of the Crouzeix ratio

نویسندگان

  • Anne Greenbaum
  • Adrian S. Lewis
  • Michael L. Overton
چکیده

Abstract Let W (A) denote the field of values (numerical range) of a matrix A. For any polynomial p and matrix A, define the Crouzeix ratio to have numerator max {|p(ζ)| : ζ ∈ W (A)} and denominator ‖p(A)‖2. M. Crouzeix’s 2004 conjecture postulates that the globally minimal value of the Crouzeix ratio is 1/2, over all polynomials p of any degree and matrices A of any order. We derive the subdifferential of this ratio at pairs (p,A) for which the largest singular value of p(A) is simple. In particular, we show that at certain candidate minimizers (p,A), the Crouzeix ratio is (Clarke) regular and satisfies a first-order nonsmooth optimality condition, and hence that its directional derivative is nonnegative there in every direction in polynomial-matrix space. We also show that pairs (p,A) exist at which the Crouzeix ratio is not regular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes

A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary ...

متن کامل

Frequency Analysis of Embedded Orthotropic Circular and Elliptical Micro/Nano-Plates Using Nonlocal Variational Principle

In this paper, a continuum model based on the nonlocal elasticity theory is developed for vibration analysis of embedded orthotropic circular and elliptical micro/nano-plates. The nano-plate is bounded by a Pasternak foundation. Governing vibration equation of the nonlocal nano-plate is derived using Nonlocal Classical Plate Theory (NCPT). The weighted residual statement and the Galerkin method...

متن کامل

A Non-Conforming Finite Element Method for Convex Optimization Problems

The goal of this paper is the analysis of a non-conforming finite element method for convex variational problems in the presence of the Lavrentiev phenomenon for which conforming finite element methods are known to fail. By contrast, it is shown that the Crouzeix–Raviart finite element discretization always converges to the correct minimizer.

متن کامل

Conditions ensuring the applicability of cutting-plane methods for solving variational inequalities

Let VIP(F; C) denote the variational inequality problem associated with the mapping F and the closed convex set C. In this paper we introduce weak conditions on the mapping F that allow the development of a convergent cutting-plane framework for solving VIP(F; C). In the process we introduce, in a natural way, new and useful notions of generalized monotonicity for which rst order characterizati...

متن کامل

Maximally monotone linear subspace extensions of monotone subspaces: explicit constructions and characterizations

Monotone linear relations play important roles in variational inequality problems and quadratic optimizations. In this paper, we give explicit maximally monotone linear subspace extensions of a monotone linear relation in finite dimensional spaces. Examples are provided to illustrate our extensions.Our results generalize a recent result by Crouzeix and Ocaña-Anaya.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 164  شماره 

صفحات  -

تاریخ انتشار 2017